

Software Behaviour Correlation in a Redundant and Diverse
Environment Using the Concept of Trace Abstraction

Abdelwahab Hamou-Lhadj, Syed Shariyar Murtaza,

Waseem Fadel, Ali Mehrabian
Software Behaviour Analysis (SBA) Research Lab,

Concordia University, Montréal, QC, Canada
{abdelw, s_eskand, w_fadel, al_meh}@ece.concordia.ca

Mario Couture, Raphael Khoury
System of Systems Section, Software Analysis and

Robustness Group, Defence Research and
Development Canada, Valcartier, Québec, Canada
{mario.couture, raphael.khoury}@drdc-rddc.gc.ca

ABSTRACT
Redundancy and diversity has been shown to be an effective

approach for ensuring service continuity (an important

requirement for autonomic systems) despite the presence of

anomalies due to attacks or faults. In this paper, we focus on

operating system (OS) diversity, which is useful in helping a

system survive kernel-level anomalies. We propose an approach

for detecting anomalies in the presence of OS diversity. We

achieve this by comparing kernel-level traces generated from

instances of the same application deployed on different OS. Our

trace correlation process relies on the concept of trace abstraction,

in which low-level system events are transformed into higher-level

concepts, freeing the trace from OS-related events. We show the

effectiveness of our approach through a case study, in which we

selected Linux and FreeBSD as target OS. We also report on

lessons learned, setting the ground for future research.

Categories and Subject Descriptors
D.4 [Operating Systems]: Security and Protection – information

flow controls, invasive software, security kernels.

General Terms
Security, Reliability, Algorithms.

Keywords
Redundancy and diversity, Anomaly Detection, Dynamic

Analysis, Trace abstraction, Autonomic systems.

1. INTRODUCTION
Redundancy — the process of having multiple instances of the

same application run on redundant nodes, is a key component of

system resilience in the presence of an security breach. If one

node is down (due to an attack for example), a backup (and

presumably healthy) instance takes over the load and provides

services. Monitoring of the divergence between the behaviors of

each instance has also been shown to be an effective method of

intrusion detection. Redundancy alone, however, has been shown

to be ineffective since an attack can propagate to other nodes and

compromise the whole system. To address this issue, the nodes

should support some sort of diverse design. Studies have shown

that it is difficult for an attacker to compromise multiple diverse

nodes with the same attack [19].

There are different ways in which diversity can be introduced in a

computing infrastructure including the use of system architectures

[12, 40], automatic diversity through randomization [30], design

diversity using N-version programming [15], and so on. A

thorough survey of redundancy and diversity techniques for

security is presented in [20]. To detect anomalies, most of these

techniques rely on comparing the output generated by the diverse

instances providing the same input. This design, as noted by

Giffin et al. in [21], makes these methods vulnerable to attacks

that mimic the original system behaviour by returning the correct

service response. To overcome this issue, Gao et al. proposed to

compare the control flow (represented as execution traces) of

diverse processes running the same input using a behavioural

distance [17] and Hidden Markov Models [18]. Despite the

authors‘ efforts, their proposed techniques do not overcome the

inherit complexity associated with the semantic variations of

traces coming from different platforms. In many ways the

problem can be thought of as analogous to that of comparing two

sentences from different languages.

In this paper, we propose a new approach for anomaly detection in

a diverse environment. Our approach relies on the concept of trace

abstraction, which is the process of transforming a trace of low-

level events into higher-level concepts by abstracting out details

pertaining to the computing platform. In other words, the resulting

abstract trace contains operations that are agnostic to the platform

from which the trace is generated. For example, the content of an

event-based trace generated from reading a file on disk can vary

significantly from one operating system to another. The aim of

trace abstraction is to transform these low-level events into a

higher concept, such as ‗read file‘, making it possible to compare

the traces despite the environment in which they have been

generated.

The focus of this study is on operating system (OS) diversity. OS

diversity is an effective way to improve the overall resilience of

the system in the presence of kernel-level attack threats. For

example, if an attack is designed to exploit Linux vulnerability, it

will most likely fail to compromise a Windows system since both

systems exhibit different flaws. In this study, we limit ourselves to

two nodes for simplicity reasons (although the concepts presented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

RACS’13, October 1–4, 2013, Montreal, QC, Canada.

Copyright 2013 ACM 978-1-4503-2348-2/13/10 …$15.00.

in this paper can easily be extended to multiple OS). The selected

operating systems are Linux Ubuntu1 and FreeBSD2. Naturally,

other operating systems can be used. Our choice is motivated by

the following criteria:

 Although Linux and FreeBSD differ internally, they both

derive from Unix. Similar conventions have been used to

develop both systems. This permits the reuse of expertise.

 Both systems are open source and free. This is very

important in the context of security since more advanced

security mechanisms might require investigating the source

code or even modifying it. This would not be possible if a

proprietary system (such as Windows) is used.

 Both systems enjoy a large online community support with

extensive documentation. We used online documentation to

understand the system call mechanisms of both systems and

be able to compare traces generated from their kernels.

 Both systems have built-in tracing capabilities. We used

LTTng 3 to trace the Linux kernel and DTrace 4 to trace

FreeBSD.

This article makes two key contributions to the scientific literature

on intrusion detection. First it proposes a new trace abstraction

algorithm that allows the translation of low-level system specific

traces into abstract traces that capture the behaviour of the target

system in a semantics-based and system agnostic representation.

Second, the paper shows how this representation can be used for

intrusion detection by correlating the simultaneous executions of

two diverse systems. This correlation leverages the fact that it is

difficult to simultaneously attack two different systems in order to

build more secure systems.

The remainder of this paper is structured as follows. The next

section develops the methodology we adopt in this study. This is

followed in section 3 by a case study which highlights the

strengths and limitations of the approach. Section 4 presents an

overview of the relevant literature. Section 5 draws the conclusion

to the study and outlines directions for future research.

2. APPROACH
Our approach is shown in Figure 1. The first instance of the

application runs under normal conditions and is intended to

capture healthy behaviour. The second instance is deliberately

infected by a simulated attack. Traces generated from these

instances during operation are first abstracted out using our trace

abstraction process and then compared. As mentioned earlier, the

abstraction process turns a raw trace into a more descriptive and

meaningful sequence of operations rather than a sequence of low-

level events.

An alternative approach would be to design mapping rules to map

system calls in Linux to their corresponding ones in BSD and use

these rules as a reference model to guide the trace correlation

process. The challenge, however, is to build an adequate set of

mapping rules that takes into account the many variations that

exist in the system call mechanisms of different operating

systems. Trace abstraction eliminates the need for a mapping

model. It is also useful in itself since it reduces the size of traces,

1 http://www.ubuntu.com/
2 http://www.freebsd.org/
3 http://lttng.org/
4 http://wiki.freebsd.org/DTrace

which is necessary for the effective use of several trace analysis

techniques including trace correlation (see [24, 25] for more

discussion on the use of trace of abstraction techniques for trace

comprehension). However, unlike a rule-based model, trace

abstraction causes loss of information. This information might be

needed to detect some attacks. Future work should focus on

determining the level of details that abstract traces should contain

to reduce the effect of lost information.

Figure 1. Correlating traces using trace abstraction

2.1. Trace Generation
The traces used in this study are system call traces, which depict

the interactions between user applications and the kernel. We

chose system call traces because they have been used extensively

in the area of intrusion detection (e.g., [15, 16, 27, 34, 35]). The

common approach is to build a reference model (using various

machine learning techniques) from traces of system calls during

normal execution of the system (usually in a lab environment). A

fault detection technique can then be developed by observing,

using monitoring capabilities, any deviations of the deployed

system from the baseline model. These studies, however, do not

take into account diversity.

We used two tracers, namely LTTng and Dtrace, which generate

traces for Linux and BSD respectively. LTTng is a tracer that was

developed to extract information from the Linux kernel, user

space libraries, and user applications by running a recompiled

instrumented version of the kernel [7]. In this study, we installed

LTTng version 2.6 on Linux Ubuntu 10 with kernel version

2.6.34. LTTng traces can be generated by directly running LTTng

through the command line, or by using a tool called LTTV

(LTTng Viewer) through its graphical user interface [8].

An LTTng trace contains information related to the process being

executed including the trace file, event name, time in seconds,

time in nano seconds, trace file path, process ID, process name,

parent ID, process group ID, execution mode, and other

parameters related to the event being executed. However this

Correlation

Report

Attack
Script

Application

Linux (LTTng)

Application
FreeBSD (DTrace)

Trace2 Trace1

Trace
Correlation

Trace
Abstraction

information could vary depending on the selected trace points, and

hence, there may be differences in the traces from one version to

another and from one testing platform to another. A typical

LTTng trace has the following format:

TraceFile.Event Time(s).Time(ns)

(Path_To_Trace_File), PID, PGID, ProcessName,

PPID, MODE {PARAMS}

An example of a trace using the above format is shown

below. This trace represents the system calls executed when

a file is opened, data written to it, and then closed.

kernel.syscall_entry: 442192.435342606

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, SYSCALL { ip = 0xb7fac430, syscall_id

= 5 [sys_open+0x0/0x40] }

fs.open: 442192.435348299 (/tmp/trace10/fs_1),

22438, 22438, ./Files, , 29184, 0x0, SYSCALL { fd

= 3, filename = "output.txt" }

kernel.syscall_exit: 442192.435348407

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, USER_MODE { ret = 3 }

kernel.syscall_entry: 442192.435350985

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, SYSCALL { ip = 0xb7fac430, syscall_id

= 4 [sys_write+0x0/0xc0] }

fs.write: 442192.435351307 (/tmp/trace10/fs_1),

22438, 22438, ./Files, , 29184, 0x0, SYSCALL {

count = 72, fd = 3 }

kernel.syscall_exit: 442192.435351415

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, USER_MODE { ret = 72 }

kernel.syscall_entry: 442192.435351522

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, SYSCALL { ip = 0xb7fac430, syscall_id

= 6 [sys_close+0x0/0x100] }

fs.close: 442192.435351629 (/tmp/trace10/fs_1),

22438, 22438, ./Files, , 29184, 0x0, SYSCALL { fd

= 3 }

kernel.syscall_exit: 442192.435351844

(/tmp/trace10/kernel_1), 22438, 22438, ./Files, ,

29184, 0x0, USER_MODE { ret = 0 }

Figure 2. An example of an LTTng trace

DTrace is a tracing tool that was originally developed by Sun

Microsystems for Solaris to provide users with ways to

understand and troubleshoot applications and the operating

system. DTrace has been ported to several other Unix-like

systems including FreeBSD. In order to install DTrace on

FreeBSD, the DTrace package must be embedded in the BSD

Kernel. DTrace should be provided with a script file that describes

the desired output format of the trace. Figure 3 shows an example

of the output file of DTrace. The CPU column identifies the

system that is used, the ID shows the process id and the

FUNCTION:NAME is the result of the script used to generate the

trace (the figure shows system calls).

One of the key differences between LTTng and DTrace traces

consists of the amount of information contained in the trace as

well as the way the information is structured. We found that

LTTng is much more expressive than DTrace. A typical LTTng

event contains the system call entry or exit information, the

timestamp, the CPU number, the process id of the current process

as well as that of its parent, the mode (system or user mode), and

the number of the bytes that need to be read from the specified file

descriptor. A typical DTrace event consists of only the system call

and the file descriptor. The generation of additional information is

possible but requires additional scripting instructions, which is not

practical, especially for operations that require on-demand

probing where this information must be provided on the fly.

CPU ID FUNCTION:NAME

1 39240 ioctl:return dtrace

1 39239 ioctl:entry SYSCALL:ioctl, dtrace

1 39240 ioctl:return dtrace

1 39239 ioctl:entry SYSCALL:ioctl, dtrace

1 39240 ioctl:return dtrace

1 39535 _sysctl:entry SYSCALL:_sysctl, dtrace

1 39536 _sysctl:return dtrace

1 39535 _sysctl:entry SYSCALL:_sysctl, dtrace

1 39536 _sysctl:return dtrace

Figure 3. An example of a DTrace trace

2.2. Trace Abstraction
The trace abstraction process takes an LTTng or FreeBSD system

call trace as input and returns a trace composed of a sequence of

high-level operations as output. Each operation is built from an

aggregation of several low-level events. The abstraction process

relies on a pattern library (i.e., a knowledge base) that we have

developed to characterize the main operations of the Linux and

FreeBSD kernel.

Figure 4. Trace abstraction approach

There exists several trace abstraction techniques developed for the

purpose of program comprehension. A good survey of trace

abstraction techniques for program comprehension can be found

in [5]. The objective of these techniques is to reduce the size of

traces by keeping as much of their essence as possible. For

example, Hamou-Lhadj et al. [24, 26] showed that the simple

removal of utilities from raw traces can result in traces that can be

understandable by humans. The content of such abstract traces

still consists of events found in the original trace. In this paper, by

abstraction, we mean changing the level of granularity of the

information contained in the trace by grouping system call

streams into operations.

To build the pattern library, we studied both the Linux and

FreeBSD kernels and their system calls mechanisms. We also

Raw Trace

Linux Kernel
(LTTng)

Trace
Abstraction
Algorithm

Abstract
Trace

Pattern
Library

Sample
LTTng
Trace

Experts

Linux
Doc.

executed a number of applications with different operations and

examined the traces thus generated to understand how the kernel

functions (as shown in Figure 4 in the case of Linux). In the case

of Linux, we also had access to experts in the area, namely, the

designers of the LTTng tool.

The pattern library for the Linux kernel system calls models the

most common operations of the Linux kernel. These operations

include: File Management (Open, Read, Write, Close. Access,

Stat), Socket Management for TCP and UDP (Create, Bind,

Connect, Listen, Accept, Send, Receive, Close), Process

Management (Clone, Execute, Exit), Memory Management and

Page Faults. In total, we created eighty patterns modeled and

implemented as finite state machines. These patterns are

documented in details in [13]. Examples of file operations patterns

are shown in Figure 5.

Figure 5 shows two patterns: File Read and File Write. In this

example, the ‗file read‘ pattern involves entering the sys_read

system call, executing the read function with the appropriate

parameters to read data from the opened file, and finally exiting

the sys_read system call. Similarly, the File Write pattern, which

represents the action of writing data to an open file, involves

entering the sys_write system call, executing the write function

with the appropriate parameters to write data to the open file, and

finally exiting the sys_write system call. An analogous process

has been followed in the development of patterns for other Linux

operations such as socket and process management operations.

Figure 5. Example of two patterns ‘read and

write’ file Linux operations

We followed the same process to create patterns that represent

FreeBSD kernel-level operations. For this study, we have only

focused on patterns that model file and process management

operations. We did not attempt to model all patterns in FreeBSD

since we only experimented with a simple attack in which the file

operations patterns were involved. Future research should focus on

improving the pattern library for FreeBSD and Linux in order to

generalize the abstraction process and support additional

operations.

Once the pattern libraries for both OS are in place, the abstraction

process takes an LTTng or FreeBSD trace as input and starts by

parsing the trace from the first line, comparing each event with the

event patterns that exist in the corresponding pattern library until a

match is found. Subsequently, the pattern containing the event is

shifted from its old state to a newer state waiting for the next event

to be read. Then, a new line is read by the algorithm, and the

events are compared. When an event causes a pattern to be shifted

to a final state, a new high-level construct representing that pattern

is created and pushed into a stack of high-level constructs. When

the algorithm has finished processing the entire trace, the patterns

of events will be replaced with higher-level constructs, ordered in a

stack, that reflect the system behaviour in a more compact and

readable format.

Repeats Detection Algorithm

Inputs:

 N = The minimum length of a repeat

 S = Stream of data (i.e., the

trace)Output

 A hash table T that contains the repeats,

their location in the stream of data, and

their frequency

1. Set T to the empty table

2. For all i from 0 to the length of S

 2.1 Find an N-gram sequence of size N

 starting from S[i]

 2.2 If T does not contain this N-gram

 2.2.1 Place it and its location in the

 stream (i.e., i), and its frequency in

 the table (in this case the frequency is

 1 since this is the first occurrence of

 this N-gram)

 2.2.2 Update T by inserting the N-gram,

 its location, and its frequency

 2.3 If T contains N-gram

2.3.1 For each previous occurrence of the

N-gram check if, by extending the

current N-gram and comparing it to

an extension of the previous

occurrence, we can obtain a longer

sequence. If yes then replace the

previously stored occurrence with

the new N-gram with the extension.

If not then update the number of

occurrences of the stored N-gram

3. Output T.

Figure 6. Repeats detection algorithm

2.3. Trace Correlation Algorithm
The next step is to compare the abstract traces to enable the

detection of potential deviations. One way of doing this is by

performing an event-to-event matching. This approach, however,

has several limitations. To start with, it does not account for the

number of repetitions that occur in a trace that can vary from one

system to another. By studying examples of LTTng and Dtrace

traces generated from the same system, we found that it is

common to have significant differences in the number of

operations that appear in both traces. For example, write and read

operations may appear at different frequencies due to the way the

buffer is set for each operating system. In many cases, we also

found that the execution order of some operations also varies

(due, perhaps, to parallelism or optimizations done by the

compiler). Comparing traces using an event-to-event matching is

simply too restrictive.

In this paper, we propose to compare traces based on their main

behaviour. Previous studies conducted by Hamou-Lhadj et al. and

Idris et al. [22, 28], show that the main behaviour embedded in a

trace often takes the form of a pattern, defined here as a sequence

of data which occurs non-contiguously in a trace at least twice.

We use the term repeats to distinguish the patterns in this context

with the patterns used for abstraction. These repeats form the

basis of our behavioral comparison of the event traces: the more

common repeats two traces contain, the more similar they are.

Our repeat detection algorithm is described in Figure 6 and is

based on n-gram extraction techniques, a well-known approach

used in text mining. The algorithm takes as input, N, the minimum

number of elements in a repeat and the trace (which is seen here

as just a data stream). It then goes through the data stream and

finds all longest sequences of minimum size N. It uses a hash

table to save the repeats, their locations in the trace, and their

frequency. N is specified by the user and could vary from one

application to another. It is therefore important for the tool that

implements this approach to allow enough flexibility to

experiment with different values of N. An alternative would be to

find the longest patterns that exist in the data, but this might lead

to very large repeats containing large portions of the abstract trace

defeating the purpose of dividing a trace into repeats in the first

place.

Let ST1 and ST2 be two sets of repeats, (extracted from the trace),

we have developed a distance metric that measures how ―far‖ ST1

is from a set ST2. This is accomplished by measuring the

difference between ST1 and ST2 using the edit distance [36]. The

edit distance measures the cost of substitution, insertion and

deletion operations needed to transform one set into another. We

define three sets that are used to measure the distance between

two traces:

M = { r | r ∈ ST1 ∧ r ∈ ST2 }

I = { r | r ∈ ST1 ∧ r ∉ ST2 }

J = { r | r ∉ ST1 ∧ r ∈ ST2 }

Here M is a mapping set that contains all the repeats that are in

ST1 and ST2; I is a set of repeats that are in ST1 but not in ST2

and finally, J is the set of repeats that are in ST2 but not in ST1.

The distance between ST1 and ST2 using the edit distance is

computed as follows:

dist(ST1 , ST2) = p|M| + q|I| + r|J|

where p is the cost of substitution, q is the cost of deletion,

and r is the cost of insertion.

In this study, we consider p = 0 and q = r = 1 (see [36] for more

details on using the edit distance). In other words, we replace

substitution with insertion and deletions. Other weights could be

given to the cost of substitution, insertion, and deletion if justified

with thorough experimentation. In this study, we limit ourselves

to equal weights between the insertion and deletion operations.

Once the distance between two traces is measured, the similarity

metric can be computed as follows:

sim(ST1 ,S T2) = 1 –

where |ST1| and |ST2| denote the number of repeats in ST1 and

ST2 respectively.

This metric yields a result between 0 and 1. If the result is zero

then the two traces are completely different. If the result

converges to one then the two traces contain many similarities. A

threshold should be used to determine the extent to which two

traces are considered similar (or dissimilar). We anticipate that

this threshold will vary from one application to another.

3. CASE STUDY
The objective of the case study is to study the effectiveness of our

approach by testing it with a real attack on two instances of the

same system running on two different OS, namely Linux

FreeBSD. We stress that while we experimented with these two

OS, the principles exposed in this paper are general enough to be

applied in different contexts, such as a different choice of OS, or

even in the case where diversity is introduce at another layer of

the system, such as hardware or user-level application.

3.1. Target System and Experiment Setting
We focus in this study on the Easy Editor (ee) ver. 1.4 system5 as

the target application. The ee editor is a simple screen oriented

text editor for Linux and FreeBSD. It supports most common

operations found in today‘s text editors (inserting text, editing,

searching for text, etc.).

The experimental setting consists of two Intel Core Duo 1.86 GHz

computers running Linux and FreeBSD separately. We installed

LTTng on the Linux machine and DTrace on the FreeBSD

machine. Finally, we installed the ee application on both systems.

We run the healthy application on Linux and the attacked version

on FreeBSD. The attack that was simulated on FreeBSD is

described in the next section. It should be noted that, despite our

efforts, it was a challenge to find attacks that exploit

vulnerabilities in systems that run on both Linux and FreeBSD.

Most attacks reported on known attack repositories such as CVE6

(Common Vulnerabilities and Exposures) come without

implementation, which complicates the process of simulating and

generating real attacks.

3.2. Simulation of the Attack
In FreeBSD, we open two terminals, one with root privileges as a

real user and the other one, also with root privileges, as the

attacker. Root runs the ee editor and creates test.txt (a sample text

file), in which the text ―Hello‖ is written in the editor. We then

apply the method ispell() to check the spelling. FreeBSD creates a

temporary file in the /tmp/ folder called ee followed by the

process id (that we refer to here as ee.processID). On the other

terminal, the attacker creates a symbolic link (we wrote a script to

create the link automatically) to the file ―ee.processID‖ inside the

folder /tmp/. This will provide the attacker the opportunity to have

a link with the root privilege and it is now possible for the attacker

to overwrite the temporary file that was created (for example by

inserting malicious code). A subsequent usage of this file can

cause the malicious code to run.

To prevent such attacks, race guards are normally implemented in

the kernel to protect it against vulnerabilities that result from race

conditions during temporary file creation — a typical TOCTTOU

(Time of Check To Time Of Use) problem.

It appears that the ispell_op function used by ee while executing

spell check operations employs an insecure method of temporary

file generation. This method produces predictable file names

based on the process ID and fails to confirm which path will be

overwritten by the user.

These predictable temporary file names seem to be problematic

because they allow an attacker to take advantage of a race

condition in order to execute a symlink attack, which could allow

5 http://www.ipnom.com/FreeBSD-Man-Pages/ee.1.html
6 http://cve.mitre.org/

him to overwrite files on the system in the context of the user

running the ee editor. This vulnerability was reported in 2006 (See

CVE bug report entry below) and fixed in subsequent versions of

FreeBSD.

Bugtraq ID: 16207

CVE Name: CVE-2006-0055

URL:http://www.securityfocus.com/bid/16207/info

FreeBSD Advisory: SA-06:02.ee

On the Linux machine, we simply run the same scenario without

the attack (i.e., opening ee and writing to it the Hello message).

We generated two traces from the execution of both the healthy

and the unhealthy instances of the ee application. The sizes of the

raw traces of LTTng and FreeBSD are 142 MB and 152 MB

respectively. These are considered relatively small traces and are

used in this paper as a proof of concept. Future work should focus

on large scale experimentation using more attacks with the

potential of generating significantly larger traces.

3.3. Correlation Results
After applying the abstraction algorithm, the correlation process

resulted in 54% similarity (with N = 2), which indicates that the

two traces differ substantially. We further examined the content of

the healthy and unhealthy traces semi-automatically using SEAT

(Software Exploration and Analysis Tool), which is a tool that

permits the analysis and exploration of large traces [23]. This

exploration required both the examination of the abstract and

original traces. We tried to find keywords in the original traces

that could reveal the attack. For example, we knew that the attack

uses the command ln to create the symbolic link. This command

could only be found just in the unhealthy trace and not the healthy

one.

File Read File Write
File Position and Read File Read
File or Socket Close File Open
Control Device File Read
File Stat File Seek
Control Device File Read
File Write File or Socket Close
File Open File Access
File Write File Open
File Read File Stat
File Open File Position and Read
 --------- File or Socket
File Write File Write
File Read File Read
-------------- Control Device File Write
File Write File Open
-------------- File Read File Write
Control Device File Stat
File Read File Write
File Write File or Socket Close
File Open File Write
File Read Control Device
File or Socket Close ---------- File Write
File Open

 Trace 1/2 Trace 2/2

Figure 7. Part of the FreeBSD unhealthy trace with the attack

After thorough investigation of both traces (LTTng and DTrace

traces), we were able to detect places in the FreeBSD trace where

the effect of the attack appeared (see Figure 7). In the first part of

the figure (circled area), it seems that the system was saving new

information which consisted in the new link to the temporary file.

In the second part of the deviation, after investigating the file

descriptors, we found that this part represents an interaction

between the root terminal and the admin terminal that could

represent the linking to temporary file. These interactions did not

appear in the LTTng traces, which clearly indicates the presence

of a deviation with respect to the normal behaviour.

This analysis required some manual work to detect whether or not

the attack is indeed what caused the behavioural deviation to

occur. We recognize that deeper and further analysis is needed to

have automatic ways to pinpoint to the attacks in the trace. On the

other hand, we believe that this forensic analysis can be very

beneficial in situations where automatic detection fails. Also, the

abstraction process enabled this forensic analysis, the same way it

helped performing a fair correlation between the two different

traces.

4. RELATED WORK
Trace correlation as a practical tool of security analysis draws on

the theoretical background of employing redundancy and diversity

to ensure the security of systems. Indeed, redundancy and

diversity has been the subject of many studies with a particular

emphasis on building fault-tolerant systems and improving overall

system reliability. In this regard, a rich literature dating back to

the late 70s exists around the N-version programming

development paradigm [1], which consists in using multiple

redundant software components to increase the reliability of key

systems. This literature reports a number of experiments

conducted in academic settings to evaluate the feasibility and

efficiency of the approach as well as theoretical enquiries aimed at

modeling and reasoning about the behaviour of N-version

systems.

The question of using N-version programming for security, rather

than for reliability, was raised in a number of studies. Littlewood

et al. examined the question in [32]. Bessani et al. argued in

favour of using diversity for security on the basis of the recorded

distribution of vulnerabilities in several operating systems [3].

The various layers where diversity can be inserted are examined

from the perspective of maximizing security [30], whereas the

utilization of design diversity to protect against computer viruses

was examined in [28].

The use of diversity for security rather than for reliability, termed

automated diversity, was first suggested by Forrest et al. in [14].

The authors observed that the homogeneity of computer systems,

makes the whole infrastructure vulnerable. Drawing on an

analogy to biological systems, Forrest et al. argued that the

robustness of systems could be improved if the program instance

used by each user differed slightly from that of every other user.

In this context, a large body of work exists that examines the way

diversity should be introduced in a computing infrastructure (e.g.,

[3, 31, 40]). However, these studies do not deal with the problem

of correlating the behaviour of the applications, which is the main

object of this paper. Other studies that propose using diversity

towards the goal of securing systems include [4, 6].

Given the above background, this study focuses on trace

abstraction and correlation as a tool for intrusion detection. In this

regard, trace abstraction represents a useful strategy to circumvent

the considerable size of the output of low-level tracers. The

resulting abstracted trace can then serve as basis for different

types of analyses. Most trace abstraction techniques are based on

pattern matching: low-level events are grouped together to form a

single abstract event according to a library of known patterns,

which maps the former and the latter. This technique was applied

to the traces generated by the Lttng tracer by [11, 12, 13, 33, 39].

Matni and Dagenais propose in [33] an automata-based approach

that detects the occurrence of patterns of suspect behaviour in

kernel traces. Fadel employs user-defined patterns to extract

compact abstract traces from larger low-level system call traces

[13]. Waly and Ktari use a similar technique to and show how

these abstract traces can be used for anomaly detection [39]. In a

recent study, Ezzati-Jivan and Degenais [12], use information

about the current system state to provide a more precise

abstraction and also show that this finer abstraction can be used

for intrusion detection. A number of other tools, such as STATL

[11], also use pattern matching for intrusion detection.

Perhaps the closest work to our study is that of Gao et al. in [17,

18]. The authors propose two approaches for measuring the

control flow of applications deployed in a diverse environment:

Behavioural distance and Hidden Markov Models. The

behavioural distance is used to measure the extent to which traces

are similar. The authors, however, have to sacrifice the order of

sequences to overcome the problem of comparing raw traces. In

subsequent work [18], the authors use Hidden Markov Models

(HMM) to build a reference model that is used to guide the

correlation process.

Finally, we should mention the fact that there are many studies

that use system call traces for anomaly detection (e.g., [15, 16, 27,

34, 35]). These studies, however, do not take into account

redundancy and diversity, which is the focus of the work

presented in this paper.

5. CONCLUSION
We presented an approach for anomaly detection in the presence

of OS diversity. We successfully compared traces generated from

two OS, namely Linux and FreeBSD. For the trace correlation to

make sense, the traces were first abstracted out using a pattern

library that we had built to capture the main operations of Linux

and FreeBSD. For our approach to be generalized, we need to

conduct further studies involving different OS and more attacks.

6. ACKNOWLEDGMENTS
This work is partly supported by the NSERC and DRDC (Defence

R&D Canada), Valcartier, QC, Canada.

7. REFERENCES
[1]. Avizienis, A. 1985. The N-Version Approach to Fault-

Tolerant Software. IEEE Transactions on Software

Engineering, 11(12) , 1491-1501.

[2]. Barrantes, E., Forrest S. 2006. Increasing communications

security through protocol parameter diversity. In

Proceedings of the 32nd Latin-American Conference on

Informatics (Santiago, Chile, August 25-26, 2006).

CLEI‘06.

[3]. Bessani, N., Obelheiro, R. R., Sousa, P., Gashi, I. 2008. On

the effects of diversity on intrusion tolerance. Technical

Report, Department of Informatics, University of Lisbon,
DI/FCUL TR 08–30.

[4]. Bruschi, D., Cavallaro, L., and Lanzi, A. 2007. Diversified

Process Replicae for Defeating Memory Error Exploits. In

Proceedings of the 3rd International Workshop on

Information Assurance (New Orleans, Louisiana, USA,

April 11-13, 2007). WIA‘07. IEEE Computer Society, 434
– 441. DOI= 10.1109/PCCC.2007.358924

[5]. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L.,

Koschke, R. 2009. A Systematic Survey of Program

Comprehension through Dynamic Analysis. IEEE

Transactions on Software Engineering (TSE), 35(5), IEEE
Computer Society, 684-702. DOI= 10.1109/TSE.2009.28

[6]. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W.,

Davidson, J., Knight, J., Nguyen-Tuong, A., and Hiser, J.,

2006. N-Variant Systems: A Secretless Framework for

Security through Diversity. In Proceedings of the 15th

USENIX Security Symposium (Vancouver, B.C., Canada,

July 31-August 4, 2006). USENIX Association, Article No
9.

[7]. Desnoyers, M., and Dagenais, M. R. 2006. The LTTng

tracer: A Low Impact Performance and Behavior Monitor

for GNU/Linux. In Proceedings of the Ottawa Linux
Symposium, 2006.

[8]. Desnoyers, M. 2009. Low-impact operating system tracing.

Ph.D. Dissertation, École Polytechnique de Montréal,
Montréal, QC, Canada.

[9]. Deswarte, Y., Powell, D. 2004. Intrusion tolerance for

Internet applications. In Proceedings of the IFIP 18th

World Computer Congress on Building the Information

Society (Toulouse, France, August 22–27, 2004). 241–256.
DOI= 10.1007/978-1-4020-8157-6_22

[10]. Deswarte, Y., Kanoun, K., Laprie, J.-C. 1998. Diversity

against accidental and deliberate faults. In Computer

Security, Dependability, and Assurance: From Needs to

Solutions (York, UK; Williamsburg, VA, July 7-9, 1998),
171–181. DOI= 10.1109/CSDA.1998.798364

[11]. Eckmann, S., Vigna, G., Kemmerer, R. 2002. STATL: An

attack language for state based intrusion detection system.
Journal of Computer Security 10(1-2), IOS Press, 71-103.

[12]. Ezzati-Jivan, N., Dagenais, M. R. 2012. Stateful Synthetic

Event Generator from Kernel Trace Events. Hindawi

Journal on Advances in Software Engineering, Volume

2012 (2012), Article ID 14036. DOI=
http://dx.doi.org/10.1155/2012/140368

[13]. Fadel W. 2010. Techniques for the Abstraction of System

Call Traces to Facilitate the Understanding of the

Behavioural Aspects of the Linux Kernel. Masters thesis,

Concordia University, Montreal, QC, Canada. Available
online, URL: http://spectrum.library.concordia.ca/7075/

[14]. Forrest, S. Somayaji, A., and Ackley, D. H. 1997. Building

diverse computer systems. In Proceedings of the 6th

Workshop on Hot Topics in Operating Systems (Cape Cod,

MA, USA, May 5-6, 1997), 67–72. DOI=
10.1109/HOTOS.1997.595185

[15]. Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff,

T.A. 1996. A Sense of Self for Unix Processes. In

Proceedings of the IEEE Symposium on Security and

Privacy (Oakland, CA, USA, May 6-8, 1996), 120-128.
DOI= 10.1109/SECPRI.1996.502675

[16]. Frossi, A., Maggi, F., Rizzo, G. L., and Zanero, S. 2009.

Selecting and Improving System Call Models for Anomaly

through System Call Sequence and Argument Analysis. In

Proceedings of the International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment

(Milan, Italy, July 9-10, 2009), 206-223. DOI=
10.1007/978-3-642-02918-9_13

[17]. D. Gao, M. K. Reiter, and D. X. Song, ―Behavioral distance

measurement using hidden markov models,‖ In Proc. of the

9th International Symposium on Recent Advances in

Intrusion Detection, Lecture Notes in Computer Science, pp.
19–40, 2006.

[18]. Gao, D., Reiter, M. K., and Song, D. X. 2009. Beyond

Output Voting: Detecting Compromised Replicas Using

HMM-Based Behavioral Distance. IEEE Transactions on

Dependable and Secure Computing, 6(2), 96–110. DOI=
10.1109/TDSC.2008.39

[19]. Garcia, M., Bessani, A., Gashi, I., Neves, N. and Obelheiro,

R. 2011. OS Diversity for Intrusion Tolerance: Myth or

Reality? In Proceedings of the International Conference on

Dependable Systems and Networks (Hong Kong, China,

June 27-30, 2011), 383 – 394. DOI=
10.1109/DSN.2011.5958251

[20]. Gherbi, A., Charpentier, R., and Couture, M. 2010.

Redundancy with diversity based software architectures for

the detection and tolerance of cyber-attacks. DRDC
Valcartier, Technical Report TM 2010-287.

[21]. Giffin, J. T., Jha, S., and Miller, B. P. 2006. Automated

Discovery of Mimicry Attacks. In Proceedings of the 9th

International Symposium on Recent Advances in Intrusion

Detection, Vol. 4219 of Springer Lecture Notes in Computer

Science (Hamburg, Germany, September 20-22, 2006), 41–

60. DOI=10.1007/11856214_3

[22]. Hamou-Lhadj, A. and Lethbridge, T. 2003. An Efficient

Algorithm for Detecting Patterns in Traces of Procedure

Calls. In Proceedings of the 1st ICSE International

Workshop on Dynamic Analysis (WODA), Available online

at http://homes.cs.washington.edu/~mernst/pubs/woda2003-

proceedings.pdf#page=33

[23]. Hamou-Lhadj, A. And Lethbridge, T. 2005. SEAT: A

Usable Trace Analysis Tool. In Proceedings of the 13th

International Workshop on Program Comprehension (St.

Louis, Missouri, USA, May 15-16, 2005), 157-160.

DOI=10.1109/WPC.2005.30

[24]. Hamou-Lhadj, A. 2006. Techniques to Simplify the

Analysis of Execution Traces for Program Comprehension.

Ph.D. Dissertation, School of Information Technology and

Engineering (SITE), University of Ottawa, Ottawa, ON,
Canada.

[25]. Hamou-Lhadj, A., and Lethbridge, T. 2005. Measuring

Various Properties of Execution Traces to Help Build Better

Trace Analysis Tools. In Proceedings of the 10th

International Conference on Engineering of Complex

Computer Systems (Shanghai, China, June 16-20, 2005),

559-568. DOI= 10.1109/ICECCS.2005.57

[26]. Hamou-Lhadj, A., and Lethbridge, T. 2004. Reasoning

About the Concept of Utilities. ECOOP International

Workshop on Practical Problems of Programming in the

Large, Oslo, Norway, Lecture Notes in Computer Science
(LNCS), Vol 3344, Springer-Verlag, 10-22.

[27]. Hoang, X. D., Hu, J., and Bertok, P. 2009. A program-based

anomaly intrusion detection scheme using multiple

detection engines and fuzzy inference. Journal Network

Computing and Application, 32(6), 1219-1228. DOI=
10.1016/j.jnca.2009.05.004.

[28]. Idris, M., Mehrabian, A., Hamou-Lhadj, A., Khoury, R.

2012. Pattern-Based Trace Correlation Technique for

Software Evolution. In Proceedings of the 3rd International

Conference on Autonomous and Intelligent Systems,

Springer Lecture Notes in Artificial Intelligence Series

(Aveiro, Portugal, June 25-27, 2012), 159-156. DOI=
10.1007/978-3-642-31368-4_19

[29]. Joseph M. K. and Avizienis, A. 1988. A fault tolerance

approach to computer viruses. In Proceedings of the

International Conference on Security and privacy (Oakland,

CA, USA, Apr 18-21, 1988), 52–58. DOI=
10.1109/SECPRI.1988.8097

[30]. Just, J. E., and Cornwell, M. R. 2004. Review and analysis

of synthetic diversity for breaking monocultures. In

Proceedings of the ACM Workshop on Rapid Malcode, 23–
32. DOI= 10.1145/1029618.1029623

[31]. Keromytis, A. D. 2009. Randomized instruction sets and

runtime environments past research and future directions.

IEEE Security and Privacy, 7(1), 18–25, DOI=

10.1109/MSP.2009.15

[32]. Littlewood, B., Strigini, L. 2004. Redundancy and Diversity

in Security. In Proceedings of the 9th European Symposium

on Research Computer Security (Sophia Antipolis, France,

September 13 - 15, 2004), 423-438. DOI= 10.1007/978-3-

540-30108-0_26

[33]. Matni, G., Dagenais, M. 2009. Automata-based approach

for kernel trace analysis. In Proceedings of the Canadian

Conference on Electrical and Computer Engineering (St.

John's, NL, May 3-6, 2009), 970 – 973, DOI=
10.1109/CCECE.2009.5090273

[34]. F. Maggi, F., Matteucci, M., Zanero, S. 2010. Detecting

Intrusions through System Call Sequence and Argument

Analysis. IEEE Transactions on Dependable and Secure
Computing, 7(4), 381-395. DOI- 10.1109/TDSC.2008.69.

[35]. Mutz, D., Valeur, F., Kruegel, C., Vigna, G. 2009.

Anomalous System Call Detection. ACM Transactions on

Information and System Security, 9(1), 61-93. DOI=
10.1145/1127345.1127348.

[36]. Valiente, G. 2001. Simple and efficient tree comparison.

Technical Report LSI-01-1-R, Technical University of
Catalonia, Department of Software, 2001.

[37]. Yang, W. 1991. Identifying syntactic differences between

two programs. Software, Practice and Experience Journal,

21(7), 739–755. DOI= 10.1002/spe.4380210706.

[38]. Xu, J., Kalbarczyk, Z., Iyer, R. K. 2003. Transparent

runtime randomization for security. In Proceedings of the

22nd International Symposium on Reliable Distributed

Systems (Florence, Italy, Oct.6-18, 2003), 260 – 269. DOI=
10.1109/RELDIS.2003.1238076.

[39]. Waly, H., Ktari, B. 2011. A Complete Framework for

Kernel Trace Analysis. IEEE Canadian Conference on

Electrical and Computer Engineering (Niagara Falls, ON,

May 8-11, 2011), 1426 – 1430. DOI=
10.1109/CCECE.2011.6030698.

[40]. Wang, F., Jou, F., Gong, F., Sargor, C., Goseva-

Popstojanova, K., Trivedi, K. 2003. SITAR: A Scalable

Intrusion-Tolerant Architecture for Distributed Services. In

Foundations of Intrusion Tolerant Systems, 153-155. DOI=
http://doi.ieeecomputersociety.org/10.1109/FITS.2003.1264

94.

